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Abstract—Fracture mechanics and damage mechanics are two correlated theories. In some
instances, e.g., for large specimens, crack propagation may be viewed equivalently as a sudden
localization of damage. Relationships based on thermodynamic considerations between the two
theories are presented in this paper. They lead to the definition of the equivalent crack concept, in
passing from a damage zone to a fracture problem and, conversely, a damage zone is determined
which is equivalent to a crack. Different possible applications are presented showing that, for the
same problem, the two concepts can be used depending on the situation. Furthermore a solution to
calculate fracture energy for large specimens, when damage parameters deduced from classical tests
are known, is proposed to illustrate the capability of these equivalences. Copyright © 1996 Elsevier
Science Ltd.

1. INTRODUCTION

When quasi-brittle materials such as cementitious composites and concrete are subjected
to external mechanical loads they exhibit a non linear response which is mainly due to
damage and micro cracking. Experimental observations show that main (macro) cracks
develop on the surface of concrete specimens. What is analysed indirectly using specific
systems (acoustic emissions, ultra-sonic waves, . ..) is also diffuse micro cracking located
around the main (macro) crack. These micro cracks form the so-called process zone.

There are two main categories of models which describe this failure process : fracture
mechanics and continuous damage mechanics.

o Fracture mechanics is well suited to describe the separation due to the decohesion of
two parts of the continuum (Kaplan, 1961, Mazars, 1977). It can be applied once a crack
has been initiated, or assuming that there are initial flaws of known sizes and known
locations in the continuum.

e Damage mechanics, which includes smeared (or distributed) crack models (Bazant
and Oh, 1983, de Borst and Nauta, 1985, Mazars and Pijaudier-Cabot, 1989), describes
the local effects of micro cracking, that is, the evolution of the mechanical properties of the
continuum as micro cracking develops: elastic stiffness degradation, induced anisotropy,
anelastic strains. . .

When the location of an expected crack and the direction along which it propagates
are unknown, fracture mechanics can hardly be used because the critical flaw from which
cracking initiates needs to be determined first. On the contrary, damage mechanics offers
the essential advantage to predict the location of this critical flaw. Conversely, linear or
non linear criteria for crack propagation exist in the literature on fracture mechanics while
the relationships between these criteria and the evolution of damage in the continuum sense
are difficult to define. The bridge between fracture and damage mechanics can be considered
to be the situation where damage is equal to one at a material point, or in a small region
defining the size of an initial flaw in the theories of fracture. In most instances, this situation
corresponds to the localization of strains and damage due to strain softening. Strain
softening yields, however, several problems which need to be solved in order to bridge the
two theories, and to insure the objectivity of the numerical modelling and the well posedness
of boundary value problems at the onset of localization. More importantly, the major
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obstacle which is faced when fracture and classical (local) damage theories are compared
is that failure predicted with classical damage models occurs without dissipation of encrgy
(Bazant, 1976). Damage models predict that the density of dissipated energy is finite at
each material point but since damage localizes in a region of zero volume, the total amount
of energy dissipated to form a crack, viewed as a line along which damage is equal to one
at each material point, vanishes. Most criteria for crack propagation are based on the
quantity of energy which must be released in order to propagate a crack. Hence, there is a
major inconsistency between classical damage theories which predict that this quantity of
energy is zero and fracture mechanics which assumes that the same quantity is finite, non
zero.

This paradox has been recognized in the literature twenty years ago. Bazant pointed
out this discrepancy on the simple problem of a bar and a beam made of a strain softening
material (1976) and proposed further to implement non local models to circumvent the
problem and predict size effects (see Bazant, 1986). Simo (1989) also identified this paradox
and showed that most continuum models aimed at solving it should enforce the fact that
the amount of energy dissipation at failure is a finite, non zero quantity. Along this line,
Simo et al. (1993) proposed the modelling of strong discontinuities, cracks in the continuum
sense, in such a way that the energy dissipated per unit surface of discontinuity would
remain finite. Hence this attempt at closing the gap between continuous damage theories
and fracture mechanics was successful in the sense that the two theories were not only
consistent from the energy point of view but also from the view point of the description of
the field variables, strain and other internal variables aimed at modelling the crack and the
fracture process zone.

Progressive cracking can also be introduced in fracture mechanics as a cohesive zone,
i.e., a pressure distribution of the crack faces near the tip, which is a way to concentrate
the volume distribution of micro cracks into a surface (Elfgren, 1989). This approach results
in the fictitious crack model. The relationship between fracture and damage is, however,
merely obtained on the basis of an energy equivalence : the work of the pressure distribution
introduced near the crack tip is equivalent to the energy dissipated during fracture. Since
the fracture process zone is collapsed on to a line, the distribution of damage in this zone
cannot be obtained and this approach cannot be used for modelling diffuse damage.

Non local damage models (Pijaudier-Cabot and Bazant, 1987) or gradient dependent
models (de Borst ez al., 1992) can also be regarded as a consistent way of closing the gap
between these two theories. The key idea of non local damage models is to assume that the
condition of growth of damage is non local, i.c., that it depends at each material point on
a weighted average of the strains in a neighbourhood. This neighbourhood is scaled by an
internal length parameter related to the size of the heterogeneities (Bazant and Pijaudier-
Cabot, 1989). The distribution of damage in the process zone is obtained as a result of the
computation. Even though micro cracking is modelled in a crude fashion, i.e., by a scalar
defining the degradation of the Young’s modulus of the material which remains isotropic
in spite of the preferential orientation of the micro cracks, several numerical results show
that the paradox is avoided as far as the energy dissipation at failure is concerned. Many
experimental results on the size effect of tensile fracture can be reproduced and in the limit
of specimens of infinite sizes, linear fracture mechanics is recovered (Mazars et al., 1991).
Hence, non local damage modelling can capture diffuse and localised cracking in the same
framework, without any need for assuming initial flaws in the structure as opposed to
fracture mechanics. Spurious mesh dependency due to damage localization is also avoided
(Saouridis and Mazars, 1992). Due to the simple definition of the damage variable, the
applicability of this model is certainly very limited, e.g., to tensile fracture, but the same
principles have presided over the development of more general damage models, such as the
microplane approach which incorporates damage induced anisotropy due to the preferential
orientation of micro cracking (see, e.g., Bazant and Ozbolt, 1990, Carol ez al., 1991).

One striking fact is that non local damage and fracture treat the same kind of problems
and lead, in the cases of prediction of fracture mentioned above, to similar results. From
these considerations, the purpose of this paper is to provide a view on the possible analytical
connections between non local damage and fracture mechanics. Such a connection already
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exists for gradient models (de Borst ef al., 1992) but not for damage models. The major
difficulty in this problem is the relationship between the material parameters in the con-
tinuum model and the critical parameters in the theories of fracture. The objective of this
exercise is to offer the possibility of passing from one theory to the other during one
calculation or to obtain, from one theory, information to use in the other. This information
is mostly related to an equivalence of energy dissipated according to the two theories. The
usefulness of setting this equivalence between the two theories is, at a given modelling point,
to be able to choose the most efficient or the most simple approach. Even if non local
damage modelling encompasses both descriptions of diffuse and localized damage (e.g.,
crack propagation), it may be interesting to switch during the computation to fracture
types of approaches because they are computationally more efficient. This is the case of
large size structures where the finite element discretisation of the damage zone would require
a prohibitive amount of nodal unknowns. Conversely, the determination of the model
parameters in a damage law should benefit from the fracture tests proposed in the literature
or at least be consistent with them. This piece of information cannot be neglected whenever
the determination of model parameters involved in continuum constitutive relations needs
to be performed. Finally, there are practical situations where a structure exhibits an initial
crack. Since non local damage modelling is able to describe the behaviour of initially
uncracked structures without introducing an initial flaw, we may want to use the same
approach to predict the response of an initially cracked structure. Thus, the equivalence
between an existing crack, its process zone and a distribution of damage needs to be
obtained.

This paper is organized as follows : fracture and damage theories are recalled in Section
2. Starting from the same framework which is thermodynamics of irreversible processes,
an energetic equivalence between the two descriptions is proposed. Section 3 deals more
specifically with the bridge between damage and fracture. The energy consumption during
crack propagation, modelled with damage mechanics, is computed. Applications are pre-
sented in Section 4. We start by presenting an example of combined damage and fracture
calculation on a concrete specimen. Then, the results of Section 3 are implemented in order
to compare the fracture energy according to the damage model with experiments and linear
elastic fracture mechanics. Finally, an example of computation of an initially cracked
specimen with the continuum damage approach is discussed.

2. THEORETICAL CONCEPTS

In order to be at the same time simple and demonstrative, the presentation which
follows assumes that the behaviours concerned are linear elasticity coupled with damage
or fracture and that the evolutions are at fixed temperature.

2.1. Thermodynamic basis

A unified manner to present damage and fracture mechanics is thermodynamics (see,
for this, Lemaitre and Chaboche, 1990). Thermodynamics deals here with energetic con-
siderations, from which it is easy to relate local damage variables and global fracture
variables. These considerations start with the assumption of a specific form of the free
(reversible) energy stored in the material during straining. Let us emphasize that the paper
deals with the simplest possible forms of such energies.

The state equations are deduced from the free energy defined as:

Y = U—TS (U,internal energy; T, temperature ; S, entropy). )
For the elementary volume at a given state of damage:

|
U=3 Ail}klafj‘gk/- (2)

For the overall body, damaged or partially cracked :



3330 J. Mazars and G. Pijaudier-Cabot

U=Kq. 3)

A}y is the local stiffness matrix at a given stage of damage ; ¢, is the local strain component.
A load denoted as Q is applied to the structure, g is the corresponding displacement and K is
the global stiffness. Assuming linear elasticity and that damage is isotropic, the relationship
between AJ, and the initial stiffness of the undamaged material is:

Af;kl = Aijkl(l - D) (4)

where A, is the stiffness matrix for the virgin material, with constant values depending on
the Young’s modulus and the Poisson ratio for an isotropic material which is linear elastic.
At uniform and constant temperature the state laws give:

—for the damaged material (see Lemaitre, 1992), it comes from (1), (2) and (4) :

ik

gy = 6;3,1 = Ayu(l1 —D)ey, )
oY

Y= = %Aijklgijskl ©)

where Y is the damage energy release rate,
—for the cracked structure (A is the actual area of the crack) (1) and (3) give (Lemaitre
and Chaboche, 1990) :

¥
0-5 -K ™
q
ik o 0K
G=4= 1 ®

Apart from the sign, G is the fracture energy release rate.

The first and second principles of thermodynamics are completely satisfied if the
Clausius-Duhem inequality is also verified (Lemaitre and Chaboche, 1990). For the two
considered cases, we obtain:

— YD 20> 3Au,6uD 2 0 ©9)
. oK\ .
—GA>0—»§q2(—a>A>0. (10)

Since (—Y) is a quadratic function and K decreases when A increases, these equations
imply that D > 0, and A > 0, showing that irreversibilities correspond to micro or macro-
cracking propagation.

Assuming a monotonic loading, the equations of evolution used in the present paper
are:

—for the damage model

g=€_£c
g<0=D=0
g=()=>D>O (11)

where g is the loading function. g = 0 provides the limit of the reversible (elastic) domain,
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and ¢, is the present current value for Z, that is, for each material point, the maximum
between & ever reached during the loading history and a threshold &p,.
—for the fracture model

F=16-G¢
F<O0=4=0
F=0=>A4>0 (12)

where F = 0 defines the reversible domain (no propagation of crack) and G the present
critical value for |G|.

The damage model used in the computations hereafter (Mazars, 1986) is based on the
following, integrated, equation of evolution of damage :

SDO(] _Al) At

D = 3 = — —_
f(8, 8D05Ar, Bt) 1 z eXp[B,(S—SDO)]

(13)

A,, B, are constants, and £ is the non local value of the “‘equivalent tensile strain” defined
as:

£= [Y<{&>%, ({&y, is positive part of the principal strain ¢). (14)

£ is the average of £ over the representative volume surrounding each point x in the material.
It is the variable that controls the growth of damage:

1
E(x) = ) f &(s)a(s—x)ds (15)

V is the volume of the structure, and a(s — x) is a weight function :

V.(x) = J a(s—x)ds, a(s—x) = H(s—Xx) exp(—éﬂsl;le> (16)

where H is the function, equal to 0 if |s— x| > [./2, equal to 1 if |s—x| < [/2. This function
operates a truncature in the calculation of the integrals. It simplifies the computation of
the non local variable during finite element calculations because the domain of influence
around each gauss point is limited.

1. is the internal length of the non local continuum. It is proportional to the smallest
size of the damage localization zone. This length was assessed experimentally on the basis
of an energy equivalence between a specimen where damage is constrained to remain diffuse
and another one in which damage localizes in order to obtain a single crack (Bazant and
Pijaudier-Cabot, 1989). The value /. ~ 3d,, in which d, is the maximum size of the aggregate
in concrete, can be considered to be a correct approximate for this internal length which is
difficult to measure directly (see Mazars and Pijaudier-Cabot (1989), Saouridis and Mazars
(1992) for more details).

2.2. Energetic equivalence

Considering the similarity of the two approaches, it seems natural to go from one
concept to the other. One possible solution is to transform a given damage zone into an
equivalent crack or conversely. This equivalence must be thermodynamically acceptable,
which means that during the evolution :
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J—YDdV=—GA' (17)
Vv
where V is the overall volume of the structure.

3. BRIDGE BETWEEN FRACTURE AND DAMAGE
There are two ways of defining the connection between damage and fracture theories:

(i) From damage to fracture: the problem consists of a transformation of a given
damage zone into an equivalent crack.

(ii)) From fracture to damage : this necessitates the transformation of a crack into a
volume distribution of damage on a “band” around this crack.

3.1. From damage to fracture

Considering the case of LEFM, the critical condition of crack propagation coming
from (12) is —G = G,. Then eqn (17) gives the equivalent progression d4, of a crack to a
given evolution dD(x) of damage, at point x (Mazars, 1986) :

J —YdD(x)dx
R (18)

G.
If we consider now the total evolution, 0 — D(x) at point x, the equivalent crack is:

D(x)
j J —YdDdx
VJO

= 19
4, G (19

where A, is the crack, the progression of which consumed the same energy than the energy
consumed during the progression of damage in the structure.

3.2. From fracture to damage

In the general case for specimens of finite dimensions, the energy consumed during the
crack process is G the fracture energy, generally deduced from the area under the load-
displacement curve. The simulation of this process is possible using two kinds of modelling :

—the classical one is the use of non linear fracture mechanics, in which the description
of non linearities are included in the behaviour of the process zone which is collapsed onto
a line [see, e.g., the fictitious crack model from Hillerborg (1976)],

—the other uses mechanics of continuum through a non local damage modelling able
to describe the overall process: the cracked zone (D = 1) and, ahead and around, the
process zone (0 < D < 1).

Planas and co-workers (1993) have derived the relationship between non local models
for concrete and the fictitious crack model. In these approaches the fracture energy and the
softening behaviour are considered as material properties and the link between these
characteristics can be derived explicitly. This result shows that with strain softening and a
non local model, a fracture energy is implicitly introduced in the calculation. Since this
energy is independent from the boundary conditions of the problem, it can be interpreted
as the energy necessary to create a crack, that is a line where damage is equal to one and
the corresponding process zone, in an infinite body subjected to tension. But the main
problem to solve is the strain and damage distribution equivalent to a crack and its
process zone, which is generally obtained from finite element calculations. An analytical
approximation to these distributions is presented in the following.
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Consider a crack as shown in Fig. 1. The crack is replaced by an equivalent damage
zone whose mathematical expression is given in a local coordinate system following the
crack path. In the following, material points whose location is denoted as x will be more
specifically denoted according to this coordinate system x = (x), x,) whenever needed. We
restrict the analysis to the mode I fracture energy for an infinite specimen, and we consider
that the local state of stress is uniaxial tension.

The constitutive relations given in eqns (5, 11-15) are non-linear. Thus we look first at
the incremental growth of damage for linearised constitutive relations, starting from an
initial state of strain and stress. The rate constitutive relations are :

A@;kzﬁgz ‘if

d'ij(x) =(1 —DO) Aty — V.(x) 08

J a(s — x)&(s) ds (20)
2 Je

where (&%, 8%, D°) is the initial, homogeneous state of deformation and damage about which
the rate constitutive relations are expressed. Assuming that the initial state is in equilibrium,
the condition of equilibrium for small perturbations about this state is:

div(e) =0 (21)

where body forces are assumed to remain constant during the loading history. Analyses of
localization and bifurcation in non local continuum (Pijaudier-Cabot and Benallal, 1993)
have shown that the solution of this equation is harmonic. In the local co-ordinate system
of the crack (Fig. 1), its expression is:

#(x,,x,) = Aexp(—im(x,)) (22)

where o is the angular frequency of the solution and A is a vector of unknown components.
Note that this solution does not depend on the co-ordinate x,, which means that the
damage zone is infinite in this direction and that the solution is, in effect, one dimensional.
Substitution of these solutions in the constitutive relations (20) and then in the equation of
equilibrium (21) provides a linear algebraic homogeneous system of equation :

[n*Ln*]-4 =0
07. .
where n* = : in the (x, x,) coordinate system (23)
L is the tangent stiffness of the material. Note the above analysis follows exactly the
steps detailed in Pijaudier-Cabot and Benallal (1993), except that the orientation of the

localization band determined by n* is here fixed instead of being unknown. This is a
simplifying assumption which is motivated from the definition of the equivalent tensile

local coordinate system
/ tangent to the crack path

crack
Damaged Zone

Fig. 1. Damage zone equivalent to a crack.
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strain whose expression in a rate form may be difficult to obtain in a close form for any
arbitrary perturbation (the function which defines the positive part of a scalar is not
derivable in all instances). The orientation of the damage localization band is fixed on the
basis of finite element results on tensile specimens (Saouridis, 1988).

In order to admit a non trivial solution, the determinant of the homogeneous system
in eqn (23) must vanish. This condition provides the angular frequency which is also a
function of the initial state of strain and damage:

(1-D%
0 o

€32 52
08|,

= d&(w,l.) (24

where a(w, /) is the Fourier transform of the weight function which depends on the internal
length /..

The calculation of the approximated fracture energy is based on the assumption that
at the onset of strain localization, i.e., at the onset of localized cracking, the distribution of
strain and damage jumps suddenly from a homogeneous distribution to a harmonic solution
with the smallest possible wave length. This is based on stability considerations which
require that the width of the localization zone should be as small as possible and on
the assumption that the variation of angular frequency during intermediate states where
maximum damage is neither equal to zero nor to 1 has a relatively small influence on the
energy dissipation. In an infinite body, localization occurs suddenly and maximum damage
jumps very rapidly to one. Therefore this assumption does not seem to be too far away
from the exact process of localization in which the region in which damage evolves shrinks
with increasing damage as the loading progresses. If a maximum strain ¢,, at which
complete failure occurs is defined in the model, the maximum angular frequency within the
interval [0, ¢,,,] is searched.

The angular frequency corresponding to the minimum possible value of the width of
the damage zone along the axis x, of the local co-ordinate system is selected for deriving the
approximate distribution of strain. The distribution of damage is obtained by substitution of
the harmonic solution in the equations of evolution of damage (13) expressed in a rate
form for uniaxial tension which are:

D= epo(1—4)) A,B, z
_[ 2 eXp(B,(E—sDo))}
&(x) = AT J a(s —x)é3, ds. (25)

After substitution of the harmonic solution (22), integration of the equation of evol-
ution of damage (25), between 0 and 1, and rescaling so that damage is equal to 1 along
the crack path, we obtain:

J ) a(xz —s2)n(s;) ds,

D(x;) =

f " a(sn(s) ds,

with

’I(Xz) = Cos(wmaxx2) if X2 EI:T

b}
max 2 max

] and D(x,) =0

n(x,) = 0 elsewhere. (26)
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Distribution of damage due to a crack
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Fig. 2. Distributions of damage equivalent to a crack (variation along the local axis x,).

The integration in eqn (26) is now only carried out according to co-ordinate x, because all
the field quantities are constant with respect to the other co-ordinate, x,, and because the
non local average is normalized.

Figure 2 shows a typical distribution of damage obtained with the present approxi-
mation. This distribution depends in particular on the internal length /, of the material. It
is independent from the local coordinate x,. The distribution of damage is constant along
lines parallel to the crack. The damage variable is exactly equal to one on the line where
the crack is located. The rest of the distribution of damage represents the fracture process
zone, which is not collapsed on the crack line, as in fracture mechanics-based models.

The energy consumption due to crack propagation is the integral of the energy dis-
sipation at each material point of co-ordinate x, in the fracture process zone which en-
countered damage up to D(x,). For a unit length of the localization band into an infinite
body it comes from eqns (9), (17) and (25):

+oo (A | of
Gf:J B {J‘o EE(‘J%Q %dﬁ}d}(z

with & = ¢,, (uniaxial tension). 27)

According to the equivalence set in Section 2.3, this dissipation energy corresponds to the
energy released in fracture mechanics. Coming from infinite geometry this result represents
the fracture energy for a large specimen and can be compared to the G, deduced from the
size effect method (Bazant, 1984).

Note that the width of the fracture process zone is implicitly fixed by eqn (26). It
should be of the order of 2/ since (i) this ratio was used for the calculation of the internal
length obtained as /. &~ 3d, where d, is the maximum aggregate size, and (ii) this ratio was

confirmed by numerical calculations. This result can serve as a check for the approximation
method.
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Fig. 3. Principle of the passage from damage mechanics to fracture mechanics.

4. APPLICATIONS

4.1. Behaviour of a structure using a combined approach damage-fracture mechanics
The structure considered is a compact tension specimen (Fig. 4a) a series of which was
tested at LMT Cachan (Legendre, 1984). During the tests a lot of observations and

measurements were performed showing that the global behaviour includes three stages (see
Fig. 4c):

—OA, linear elastic,
—AB, damage with micro cracks, but without macro crack,
—BC, combination of both micro cracking and macro crack.

In order to describe this behaviour we propose two kinds of calculations:

—from O to B with a non local damage model,
—from B to C with linear elastic fracture mechanics.

The bridge from the first calculation to the other uses directly the equivalent crack
concept presented in Section 3.1. This requires us to determine the evolution K = K(4) and
the derivative dK/d A4 as shown in Fig. 3. The global behaviour at point B (Q,, ;) gives the
stiffness K, from which it is easy to deduce the corresponding equivalent crack 4,, the value
of (—dK/dA), and, finally, from (19), the critical value G.. From G and the predetermined
evolution of (—dK/dA), Q and ¢ can be computed for each new value of A, which gives
the continuation of the Q-g curve. A summary of the whole procedure is given in Fig. 3. In
the present case the following parameters have been used :

—mnon local damage calculation: E = 34,500 MPa, &, = 1.23 E-04, A, = 0.8,
B, =20,000, /, = 30 mm;
—critical fracture energy at point B: Qg = 18.9 kN, ¢z = 0.2 E-03 m,
Kz =9.5E+04 kN/m (—dK/dA4), = 51 E+05 kN/m’,
Ge = 129} (—dK/dA)p = 102 N/m;
—LEFM calculation, from eqns (9), (13). one can deduce
g = /(2G)/(—dK/dA4), from which it comes Q0 = Kg.
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Fig. 4. Compact tension specimen : a—geometry (values are cm) ; b—evolution of the stiffness with
the crack, () theoretical, (e) experimental ; c—global behaviour, calculation is performed using the
bridge from damage to fracture.

From Fig. 4b it can be pointed out that:

—the equivalent crack length at point Bisa = 13 cm,

—the experimental curve which gives the evolution of the ratio Q/g(#K) vs the crack
length measured directly on the surface (curve e) of the specimen; this is very
different from the theoretical one (curve ¢). It confirms that the real crack appears
close to the maximum of the load after a first decrease of the stiffness due to micro-
cracking, and that the evolution on the surface is faster than inside the specimen,
which entails that the remaining strength decreases softly, this result has been shown
by other authors (Bascoul ef al., 1987). One of the conclusions is that it is not easy
to deduce fracture parameters directly from crack lengths measured on the surface.

The part of the behaviour deduced from LEFM calculation looks in accordance with
the experimental curve. However, the softening slope seems greater than in the experimental
curve, this indicates that G increases during the evolution. On the other hand, we may
notice that the value determined from the analytical calculation, Section 3.2, is G, = 115
N/m. It is close but greater than G, coming from the equivalent crack concept.

4.2. Prevision of G, with damage mechanics for large specimen from size effect

The structures considered for this presentation are notched beams of different sizes,
the geometry of which is given in Fig. 5. The tests have been done at Lund University
(Horvath and Persson, 1984) and the calculations, using a non local damage model, have
been performed by Saouridis (1988). Deduced from other experiments and from the smallest
beam (P), the parameters introduced into the damage calculation have been used for
predicting the responses of the specimens of the two other sizes. They are E = 32,300 MPa,
epo = 3.0 E-05, 4, = 0.6, B, = 3700, /. = 30 mm.

Figure 5 shows the good agreement between experimental and computed load-deflexion
curves, as well for the peak as for the post peak. In order to explore the size effect, we used
the classical presentation into the log-log stress-size diagram (Fig. 6.) From these results
and using a regression line, the Bazant size effect law has been determined :
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Fig. 5. Notched beams : a—geometry ; b—computed and experimental load-deflexion curves.
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Fig. 6. Size effect on notched beams, determination of G, for large specimen : (- - -) asymptote issued
from the size effect law ; (—) asymptote issued from analytical calculation of G,.
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on = Bf(1+d/iod,)”"" (28)

with f, = 30 MPa, d, = 10 mm, it was found B = 0.629 and 4, = 20.

The size effect method, which consists of the determination of fracture parameters
from asymptotic values of the size effect law, leads to K. = 1.49 MPa\/m. With G, = K2
(1 —v*)/E (plane strain conditions are used, because of the relative large thickness of the
beam specimens), we obtain G = 65.8 N/m. From the non local parameters, the analytical
determination of the fracture energy previously presented leads to G- = 55.6 N/m or
K. = 1.37 MPa,/m. Due to the assumption of a uniaxial tension state in the cracked zone,
as indicated in Section 3.2, this approach is valid for a large specimen, the value obtained
for K. can be plotted into the log-log stress-size diagram as an asymptote, which is, in fine,
close to the one found from the size effect law. Therefore, it is possible to obtain the fracture
energy as a result of a computation with damage mechanics with a sufficient accuracy. This
computation can be used to check the values of the parameters in the damage model.

4.3. Behaviour of specimens with initial damage

Conversely, it is possible to represent cracking by an equivalent damage zone. This
equivalence follows from the same assumptions as those used for the derivation of the
fracture energy. We consider that existing cracks have been created following a mode I
process. Given a crack observed on a structure, the approximation given in (26) provides
an equivalent map of damage. At the crack tip, the distribution of damage is lacking in the
approximation. It is assumed to be circular and variable x, is replaced by the radius r
defining the distance from the considered point to the tip of the crack. This map can be
transferred on a finite element discretization and subsequent calculations aimed at eval-
uating the behaviour of the damaged structure can be performed. This method possesses
the advantage of being completely disconnected from the mesh generation. An existing
crack in the structure is modelled as a set of broken lines imputed interactively on the
computer screen which shows the structure. Then, the distribution of damage is computed
according to eqn (26) at each Gauss point of the mesh. Detailed information is given in a
report by Bodé ez al. (1995) where the predictions of this approximation was checked against
experimental data on initially cracked concrete and fibre reinforced concrete specimens. We
show here an example of computation on a compact tension specimen similar to that
tested by Legendre (1984) shown in Fig. 4a with different material properties. The model
parameters for this computation are :

epo =0.85107%, E=32000MPa, v=02, 4,=1, B, =4300,

2
L =36cm, =377, &

max

=3.610"".

rup

As a check of the model parameters, the fracture energy computed as the sum of the energy
dissipation over the damage zone corresponds to usual values for this concrete, G = 81
N/m.

During loading (which is displacement controlled), a mode I crack propagates in the
middle of the plate. In the computation, the position of the existing crack is first defined
independently from the mesh (Fig. 7a). In the present case, the crack length is 10 cm. Once
the crack location has been defined on the finite element mesh, a pre-processor computes
the equivalent map of damage (Fig. 7b). Finite element calculation for any boundary
conditions can be performed afterwards.

Figure 7c shows the response of the damaged compact tension specimen, i.e., containing
a crack, compared to that of the undamaged specimen. The load reduction factor, defined
as the ratio of the maximum carrying capacity of the cracked plate to the carrying capacity
on the uncracked plateis 0.7. Bodé ez al. (1995) have conducted more extensive comparisons
on this particular test and on fibre reinforced concrete beams which revealed that the
average accuracy of this approximate method for determining the load carrying capacity
of damaged structures is about 20%.
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Fig. 7. Analysis of the behaviour of the compact tension test using the bridge from fracture to
damage ; a—initial crack ; b—equivalent distribution of damage ; c—simulation of the response of
the cracked plate compared with the virgin plate.

5. CONCLUSIONS

Fracture mechanics and damage mechanics are two correlated theories. Damage mech-
anics is useful for the prevision of the omset of cracking in large specimens, fracture
mechanics can be implemented for modelling the subsequent crack propagation. Non local
damage models encompass both the prediction of crack initiation and propagation. From

thermodynamics considerations, relationships between the fracture and non local damage

theories have been shown in this paper.
There are two major uses of the proposed equivalence between fracture and damage :
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(i) Damage and fracture mechanics combination :

When non local damage parameters are known, a first stage of calculation can be
performed to obtain the zone where damage localizes (onset of cracking). From these
results, an equivalent crack and the corresponding fracture energy can be deduced. This
value presents the advantage to be the best adequate value for the situation considered,
even if linear fracture mechanics is not perfectly respected. In the second stage, linear elastic
fracture mechanics can be used. This is, obviously, more efficient if the crack path is
previously known because the finite element mesh can be properly designed for this. For
large structures, the computing time is by far reduced compared to a computation with a
non local damage model because the continuum approach requires a larger number of finite
elements in order to discretise the fracture process zone where the gradients of damage and
strain are very high.

Conversely, it is possible to represent cracking by an equivalent damage zone. This
equivalence follows from the same assumptions as those used for the derivation of the
fracture energy from the damage approach. Given a crack observed on a structure, the
approximation yields an equivalent map of damage. This map can be transferred on a finite
element discretization and subsequent calculations aimed at evaluating the response of the
damaged structure can be performed. This strategy may be used in order to investigate the
residual safety of any structure for which subsequent cracking is not known.

(i1) Identification of fracture energy parameters for large scale specimens :

It has been shown that it was possible to compute the fracture energy from the damage
model. Due to the size of the process zone which is stabilised when large scale structures
are considered, the critical value for large specimens can be determined directly. The value
of the fracture energy for large specimens can also be deduced from size effect experiments.
Any damage model consistent with the linear elastic fracture approach which holds in the
limit of specimens of infinite size should predict the correct fracture energy. This can be
very useful, either to check the identification of the parameters in the damage model, or to
determine them knowing the value of the fracture energy.
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